Laplace's law and the interfacial momentum source in two-phase models.
نویسنده
چکیده
A two-phase flow model with liquid-solid transformation [M. Hütter, Phys. Rev. E 64, 011209 (2001)] is discussed, focusing on two elements: (1) the driving force for nucleation and growth and (2) the contribution of phase interfaces to the momentum balance. According to the model, nucleation and growth are partly driven by deviations from the equilibrium pressure difference between the phases, obtained as the surface tension times the ratio of the rates of change of two structural variables: the interfacial area per unit volume and the solid volume fraction. This is shown to be the proper extension of Laplace's law to nondilute conditions. Contrary to the classical result, the equilibrium pressure difference changes sign at a volume fraction around 50% because the amount of interfacial area lost due to impingement starts to outweigh the amount gained by growth. Hütter did not notice this and consequently misinterpreted a source term in his evolution equation for the momentum density. This term involves the surface tension times the interfacial area per unit volume, which is always nonnegative and hence not related to Laplace's law, as assumed in earlier two-phase models [M. Ishii, (Eyrolles, Paris, 1975); J. Ni and C. Beckermann, Metall. Trans. B 22, 349 (1991)]. An alternative derivation of the interfacial momentum source is presented here, which shows that Hütter's result correctly expresses the balance of forces on a representative volume element and should have been presented as a correction, rather than a corroboration, of the previous works mentioned.
منابع مشابه
Diffuse interface modeling of two-phase flows based on averaging: mass and momentum equations
A diffuse interface model is derived for the direct simulation of two-phase flows with surface tension, phase-change, and density and viscosity differences between the phases. The derivation starts from the balance equations for a sharp interface and uses an ensemble averaging procedure on an atomic scale to obtain a diffuse interface version of the equations. As opposed to thermodynamically de...
متن کاملDetermination of Interfacial Area in Gas-Liquid Two Phase by Light Transmission
The purpose of the present paper is to develop light beam method to measurement of interfacial area in a rectangular gas-liquid bubble column. Total interfacial area can be determined in bubble column filled by transparent liquid by light transmission method. According to pervious researches, the fraction of parallel light is function of interfacial area and optical path l...
متن کاملInvestigation of influential factors on well temperature for gas-liquid two-phase flow in under-balanced drilling operation
Analysis of the drilling fluid temperature due to heat transfer of drilling fluid with the formation in under-balanced drilling operation is the main objective of this study. Gas-liquid two-phase flow model considering thermal interaction with the formation is used to numerically simulate a well with real dimensions. In the present study, the continuity, momentum, and energy equations are devel...
متن کاملEnergy law preserving C0 finite element schemes for phase field models in two-phase flow computations
We use the idea in [33] to develop the energy law preserving method and compute the diffusive interface (phase-field) models of Allen-Cahn and Cahn-Hilliard type, respectively, governing the motion of two-phase incompressible flows. We discretize these two models using a C0 finite element in space and a modified midpoint scheme in time. To increase the stability in the pressure variable we trea...
متن کاملApplying a Modified Two-Fluid Model to Numerical Simulation of Two-Phase Flow in the Membrane Chlor-Alkali Cells
In this study, gas evolution in a vertical electrochemical cell is investigated numerically with a modified two-fluid model. The mathematical model involves solution of separate transport equation for the gas and liquid phases with an allowance to inter-phase transfer of mass and momentum. The governing equations are discreted via the finite volume technique and then are solved by ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 81 6 Pt 2 شماره
صفحات -
تاریخ انتشار 2010